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LETTER. TO THE EDITOR 

Generalization of the Landau liquid concept: example of the 
Luttinger liquids 

J Carmelot and A A Ovchinnikovt: 
t Max-Planck-Inetitut fi FestkZrperfodung, D-7000 Stuttgart 80, Federal 
Republic of Germany 
t Institute of Chemical Physics, Kosigin str. 4 ,  117334, Moscow, USSR 

Received 12 November 1990 

Abstract. W e  introduce a new representation of the Bethe onsati solutions for ID 
Luttinger liquids which describes the spectral properties and asymptotic behaviour 
of the conelation functions of the in Hubbard model in terms of the renormalized 
interaction of charge and spin pseudopartides. The study of the low-lying eigenstates 
is reduced to the familiar languages of band theory and of the Fermi liquid. Our 
results provide a better understanding of the decoupling of charge and spin degrees 
of freedom in in interacting system, generalize the concept of a Landau liquid and 
may be relevant to the physim of higher dimensional systems. 

The purpose of this letter is to provide evidence for the fact that the usual Landau- 
Fermi liquids constitute an example of a much wider class of non-trivial many-body 
fermionic systems (probably of all dimensions). The present study is restricted to 
one-dimensional (ID) Luttinger liquids (11 that are soluble by the Bethe ansatr, and in 
particular to the (ID repulsive Hubbard model. Nonetheless, we believe that many of 
the features found in this letter have a universal character and are also present in the 
low-energy physics of nearly all non-trivial many-body fermionic liquids. These com- 
mon features follow essentially from the fact that the low-energy properties are fully 
controlled by the departure of the pseudwmomentum distribution(s) of the pseudo- 
particles (often many-body collective modes specific to each system) from its (their) 
value(s) in the interacting ground state. Moreover, after renormalisation the gener- 
alized Landau liquids have only forward (or exchange) scattering. As in the Fermi 
liquid, the two-pseudoparticle !-functions (second functional derivatives of the energy 
wi th  respect to the fluctuations) regulate the forward scattering renormalized inter- 
action of the pseudoparticles in the low-energy regime. Our results are fully consistent 
with the original idea of Anderson [2] tha t  the Luttinger liquid is a fixed point of the 
same renormalization group which, in some threedimensional systems, leads to the 
Landau-Fermi liquid as a unique fixed point. 

Although we concentrate our investigation on the case of the ID Hubbard model, 
the generalization of the results to the other ID Luttinger liquids is straightforward 
and will be presented elsewhere. A full understanding of the one-dimensional Hub- 
bard model solution [3) is of interest in its own right, and may provide clues to  the 
understanding of higher dimensional sys tem [2]. We consider the ID Hubbard model 
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at arbitrary magnetic field 

fI= - t C ( = ~ ~ c j + l ~ i c : + l ~ ~ j )  + U C c ~ ~ j r ~ ~ c j ~  - p o H C r c & c j , ,  (1 )  
j,-- j 

where c& (e,,) is the creation (annihilation) operator for an electron with spin U at 
site j. The system consists of N electrons on N, sites. We make use of the following 
notation: the dimensionless on-site repulsion U = U/4t , the density n = N/N, 
(kF = m / 2 ) ,  the spin density s = (kFt - kFl) /2*, where k,, = rN,/N,, and 
N, = M’ and NL = M are the number of up and down spins in the system. 

Lieb and Wu [3] used the Betheansafr technique to reduce the eigenvalue problem 
for (1) to that of solving a set of coupled algebraic equations. The crystal momentum 
P and the energy E are given by 

N M 

j=1  a=1 
P = En, + C P .  (2) 

E = (-21 cos IC,) - 2poN,Hs (3) 
N 

j = 1  

where we make use of the notation q j  = (2a/N,) Ij and p, = ( 2 x / N , )  J,. An eigen- 
state of the many-body system is uniquely specified by a particular choice of the 
quantum numbers (Z,}, { J a }  (or pseudo-momentum distributions { p i } ,  {pa}). For 
instance, in the ground state I, and J ,  are consecutive integers (or half-odd inte- 
gers) centred around the origin [3]. After choosing the set ( q j } ,  {pel, the Lieb and 
Wu algebraic equations determine the charge and spin rapidities Kj = Kj(pj) and 
So = S,(p,), respectively (So = &/U) [3]. Although our formulation can be ex- 
tended to excited states described by complex roots [4], we restrict the present study 
mainly to excitations involving only real rapidities. 

In the thermodynamic limit (N. + 03, n fixed) the roots K j  = K,(q j )  and 
So = S,(p,) proliferate on the real axis and the Lieb and Wu equations lead to [4] 

Ii(9) = q + 1 rF’ dp‘N,(p’) tan-’[S(p’) - (l/u)sinI<(q)] (4) 
-h 

(Ii(q), S(p) are simply related to the distributions of [3].) Moreover, the energy (3) 
yields 

E = 3 j W  d9‘MC(q‘)[-2tcosK(q’)] - 2p0N,Hs 
2a -1 

where 
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In the right-hand sides of equations (4)-(7) M,(q) and NI(p )  may be interpreted 
as pseudo-momentum distributions of charge and spin pseudoparticles, respectively. 

S(+kF,) = ?CO . Moreover, for the ground state at fixed magnetization K(p) and 
S(p) are odd functions such that K(2kF) = Q and K(kF1) = B/u, where Q and B 
are the usual cut 0% of the Lieb and Wu equations [3]. In this case the distributions 

For eigenstates involving only real rapidities, we always have: K C a )  = t - A  and 

MJq) and NI(P) read 

@(q) = @(2kF - Id) N!(P) = @(kFI - [PI) ' (8) 
As in Fermi liquid theory these distributions do not depend on the interaction. In 
the present two-fluid Landau liquid the charge and spin pseudo-Fermi surfaces are 
defined as the set of points {p = i 2 k F ,  p = &kFl} separating the occupied from 
the unoccupied region. The limits of the pseudo-Brillouin zones of the charge and 
spin psendoparticles are { q  = ia},  { p  = fkFr}, respectively. The restrictions on the 
numbers I j  and J, [3] imply that each pseudo-momentum value cannot be occupied 
by more than one pseudoparticle, i.e. the pseudoparticles have fermionic character [4]. 
These can be identified witb the 'pseudo-fermions' considered in [5] and are related 
to the holons and spinons [2,4]. The spin pseudoparticles are of the same kind of 
the ones of the Heisenberg chain [4], being closely related to the spin-; 'spin waves' 
introduced in [6]. They are many-body collective modes and in contrast to the quasi- 
particles of the Fermi liquid theory, which in the limit of vanishing interaction map 
onto real particles (electrons), the present class of pseudoparticles cannot exist out- 
side the many-body system for any value of the bare interaction (including vanishing 
interaction). This feature of the Landau-Luttinger pseudoparticles [4] is related to 
the 'infrared catastrophe' of 121. 

We consider small pseudo-momentum fluctuations around the ground-state distri- 
butions, equations (8) 

Mc(q)  = MP(q) + S,(q) NI(P) = N!(P) + ~ J ( P ) .  (9) 
As in Fermi liquid theory, the departure of the pseudo-momentum distribution func- 
tions of the pseudoparticles from their values in the ground state 6,(q),S1(p), equa- 
tions (9), fully controls the low-energy physics of the model: This is true both for 
elementary excitations involving real and complex rapidities 141. The main point in 
our approach is to consider I<(q ) ,  S (p )  and E (see equations (4)-(6)) as functionals 
of the pseudoparticle distributions. Provided that these involve a small number of 
pseudoparticles, an expansion of the energy E = Eo + E, + Ez + ' . can be performed 
to arbitrary order in the fluctuations. In the case of excitations described only by real 
rapidities, the leading order corrections read 
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As in Fermi liquid theory, the first and second functional derivatives of energy with 
respect to t,he fluctuations define the bands r , (q)  and c,(p) of the pseudoparticles and 
their interactions, the f-functions f , , (q ,q ’ ) ,  f,,(p,p‘) and f,,(q,p), respectively. The 
latter are related to the pseudoparticle zero-momentum transfer forward scattering 
amplitudes [4]. Although the fluctuations of the right-hand sides of equations (10) 
and (11) are arbitrary in the sense that the expressions for the bands and f-functions 
are independent of them, only appropriate choices of S,(q) and 61(p) describe true 
eigenstates of the many-body system [4,7], The charge and spin pseudoparticle bands 
in the presence of a magnetic field can be expressed as [4] 

where K ( q )  and S(p) are the ground-state solutions of equations (4) and (5). We note 
that pc = cc(2kF) = 0, pa = c,(kPL) = 0. In the right-hand sides ofequations (12) and 
(13) the distributions 2tqc(k) and 2tq,(v)  are solutions of coupled integral equations 
of &he same form as the Lieb and \Vu equations except that  the inhomogeneous term 
of the first of these equations is replaced by 21sink (and 2nu(A) by (1/u)2tq3(u), 
v = A/u) [3, 41. The pseudoparticle velocities are defined as u,(q) = dc,(q)/dq and 
u , ( p )  = dc,(p)/dp. In particular v,(2kF) and ws(kF,) are the same velocities as the 
ones of [8,9] (i.e. obey the same integral equations). A crucial advantage of our 
choice of variables q,p is that, given an eigenstate described by distributions (9), the 
corresponding crystal momentum P is always additive in the pkudoparticle pseudo- 
momenta (see equation (2)). In  fact, in contrast to the usual representation of Bethe 
U ~ S Q ~ Z ,  the back-flow effect only affects the energy bands c,(q)  and c,(p) [4]. The 
charge band, equation (12), is such that its bandwidth 4t,  pseudo-Brillouin zone width 
2 a  and pseudo-Fermi surface points 12k ,  remain unaltered when varying H and U, 
which slightly change E C ( q ) .  In contrast to c c ( q ) ,  the spin pseudoparticle band (13) 
is clearly affected by the magnetic field. In fact, the pseudo-Brillouin zone limits 
and Fermi surface points are given by p = *kF, and p = &kF, ,  respectively. The 
effect of U (H) on the band c,(p), equation (13), is essentially to modify its bandwith 
(pseudo-Brillouin zone). On the other hand n affects both the bandwidth and the 
pseudo-Brillouin zone. 

Except for spin singlet excitations involving complex roots (anti-bound states of 
down-spin pseudoparticles) [4], the elementary excitations can be described in terms 
of pseudoparticle-hole processes in the charge and spin bands. The full description of 
the low-lying excitations in the absolute ground state (H = 0 and kF, = kF) involves 
a ‘frozen’ up-spin pseudoparticle band which is always filled (‘holes’ are not allowed 
in the frozen band [4,71) and an upper ‘conduction’ charge band, r t ( q )  = U - c,(q)  
[4, 7 3 .  The spectra of the charge gapless [lo] and acrossgap [ll] excitations, as well 
as of the triplet two-parametric excitations [lo], can be written simply as 

E, = CC(P1)  -‘<(Po) = q1~- q0 1901 < 2kF lqll > zkF (14) 
p = 91 - Qo lqol < 2 k ~  (15) E, - 5 (n1) - %(Po) 

Et = -Ea(PI) - €,(PO) (16) 

A -  h 

= 2kF - P1 - PO b O l ?  lpll < kF 
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respectively, where the bands involved in the pseudoparticlehole processes of the 
right-hand sides of equations (14)-(16) are given by equations (12) and (13) for the 
particular case of the absolute ground state ( B  = CO). The excitations in the presence 
of a magnetic field are studied in [7]. 

As well as reducing the study of low lowing excitations to the usual language of 
band theory, the Landau-Luttinger approach allows the straightforward evaluation 
of the magnetic susceptibility (which involves the bands and f-functions) and low 
temperature specific heat: These can be readily obtained by replacing in the righe 
hand sides of equations (10) and (11) fluctuations 6,(9) and SI@) of appropriate 
form [4,7]. 

The f-functions of the right-hand side of equation (ll),  f c c ( q , q ' ) ,  j , , ( p , p ' ) ,  
f , m )  read [41 

f,, ( e ,  n') = Z%(q)@,, (n ,  e') + 2T%(¶')Q,, (q', e )  
+ 12nve (zkF)l @cc (2kFj,'?) @cc (2kFj>q')  

j=*1 

In order to define the functions @ c c ( q , q ' ) , @ e a ( q , p ) ,  s s ( p , p ' ) , Q s c ~ A  , q )  ap- 
pearing in the right-hand sides of equations (17)-(19), it is useful to intro- 
duce the auxiliary functions $,,(k, k'), &Jk, w), $,,(U, w'), $ 8 c ( w , k )  such that 

@, , (p ,p ' ) ,  6,, ( S ( p ) , I l ( q ) )  = @ , , ( p , q ) ,  where I l ( q ) ,  S ( p )  are the ground-state so- 
lutions of equations (4) and (5) .  The auxiliary functions obey the following system of 
coupled integral equations [4]: 

K c  (I<(n), I l ( n ' ) )  = + c c ( q , q ' ) ,  k ( K ( q ) , S ( p ) )  = %,(n,P),  5,, ( S ( P ) , S ( P ' ) )  = 



762 Letter to  the Editor  

- 
@bl(u, a') = Az(a, U') - 1: dk' A';"'(u,kf)6,,(kf,u') 

J-B lu  

whereAl(u,k) = ( l / ~ ) t a n - ~ ( u - ( l / u ) s i n k ) ,  A,(u,u') =(l/r)tan-'(?j(a-w')) and 
A?)(U, k )  = dA,(v,k)/dk, AY)(v,k) = dAl(u,k)/dv, A(,V)(v,v') = dAz(u,u')/du. 

The functions aCc(q, q') ,  Gc8(q,p), aSs(p,p'), %&,q) are the pseudoparticle 
renormalized scattering phase shifts [4]. In fact, the usual Bethe ansatz phase shifts, 
which for the ID Hubbard model are four in number and can be evaluated by the 
method introduced by Korepin [E] for the massive Thirring model, may be written as 
a sum of two terms [4]. The first of these terms can be considered to be the scattering 
part of the phase shift. For the present model the scattering part of the four phase 
shifts are given by equations (20)-(23) [4]. The nature of the second term is discussed 
in [4]. 

The f-functions (17)-(19) regulate the electronic spectral properties of the model. 
In fact, the 'singleparticle excitations' are described by fluctuations involving pairs 
of charge and spin pseudoparticles 141, Each point ( k , w )  of the two-dimensional space 
where the electronic spectral weight funct.ion is defined can be associated to one (or 
two) pair(s) of pseudoparticles [4]. On the other hand, there is a clear connection 
between the value of the electronic spectral function at  a point ( k ,  w )  and the interac- 
tion of the pair (or pairs) of pseudoparticles associated with that point [4]. Moreover, 
the interaction of the pseudoparticles determines the form of the electronic correla- 
tion fuiictions. Particularly, the non-classical critical exponents which characterize 
the power law anomalies of the electronic momentum and the asymptotic behaviour 
of the correlation functions, are determined by the interaction of pseudoparticles 
with pseudo-momenta in the neighbourhood of the pseudo-Fermi points Q = &2k,, 
p = fk,, 141. These exponents can be derived by the conformal'field approach [8, 91. 
To illustrate the general character of the Landau-Luttinger liquid theory, we show 
that the finite size energy corrections and expressions for conformal dimensions of 
the fields in the former theory can be obtained by choosing particular forms for the 
fluctuations of the energy functional, equations (10) and (ll), in the latter theory. 
For simplicity we restrict our considerations to the case when the number of electrons 
N and down-spin electrons M in the system remain unaltered [4]. We introduce the 
matrices R+(q,p) and R-(q,p) given by 

These matrices describe the scattering of charge and spin pseudoparticles of arbitrary 
pseudo-momenta q,  p, respectively, with right (+) and left (-) moving pseudoparticles 
of momenta at  the pseudo-Fermi points. 
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It  follows from equations (20) and (23) that the dressed charge matrix of [8,9] 
(here we use the definition of Wayiiarovich [9], which is the transpose of that of [SI) 
can be rewritten as 

Z = 1 + R ' ( 2 k , , k F I ) - R - ( 2 L , , k F I ) .  (25)  

The form of equation (25)  evidences that the matrix elements of 2 are combinations 
of phase shifts associated with the scattering of pseudoparticles with pseud-momenta 
at the pseudo-Fermi surfaces. 

We consider now fluctuations 6,(q) = M,(Q)-MM,~(Q), 6,(p) = N , ( p ) - N i ( p ) ,  such 
that 

where 1% T q:/ ,  , 1% 'f S t l  K 2 k ~  and lPsl, I ~ F I  FPt17 Ik,l TP:I *: k F ~ .  
The first term of the right-hand side of equation (26) ((27)) includes charge (spin) 
pseudoparticle-hole processes from pseudemomenta close to -2kF(-kF1) to pseudo- 
momenta in the neighbourhood of 2kF(kFl).  D, = (N, /2n)qe  ( D ,  = (N0/2a)q,) 
gives the number of pseudoparticles transferred ( D ,  N ,  D, < M).  On the other 
hand, the second term of the right-hand side of equation (26) ((27)) describes charge 
(spin) pseudoparticle-hole processes around the points k2kF (&kFI). The indices p 
and h refer to particle and hole summations. + and - refer to right- and left-moving 
pseudoparticles. The asymptotic behaviour of the correlation functions is determined 
by these pseudoparticle-hole processes which involve exclusively pseudo-momenta in 
the neighbourhood of the pseudo-Fermi points. 

We define the numbers 

To evaluate the integrals of the right-hand sides of the energies (10) and (11) we 
expand c,(q) and c L ( p )  around the pseudo-Fermi points. Moreover to the two leading 
orders only the f-functions connecting pseudomomenta at  the pseudo-Fermi points 
give contributions to the energy corrections. The energy and momentum associated 
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with the distributions (26) and (27) are given by [4] 

(30) 
2a P = - [ N D ,  + M D ,  + N: - NL t N: - N ; ] .  
N,  

The use of equations (17)-(19), (24) and (25 )  allows us to rewrite the energy (29) as 
follows: 

( 3 1 )  

(32) 

2ri 
E = Eo + - [ ~ , ( 2 k , ) ( A l  + A;) + vs(kFl)(A$ +A;)] 

No 
where 

+ t t + 
& = 4 (E,,D, + ECsDd)’ t N ;  ~ A ;  = (5,,D, + EaSDs)’ t N ;  

and E,,, E,, and (,, are the elements of matrix (25).  As our fluctuations refer 
LO the case when AJV = AM = 0 ( N  and M remain unaltered), equations (30)  and 
( 3 1 )  and ( 3 2 )  are precisely the momentum, finite-size energy correction and conformal 
field dimensions A:, A $ %  respectively, of [8,9]. The leading term in the asymptotic 
expansion of  lie corrclation functions decays with critical exponents obtained from 
(32 )  by minimizing with respect  to^ D,,D, (i.e., by minimizing with respect to 6,(q), 
6, ( p ) )  [4,8,9]. When A N  # 0 or AM # 0, extra energy boundary terms appear in the 
right-hand sides of equations (29) and ( 3 2 )  [4,8,9].  These terms arc functions purely 
of AN, AA4 and of the renormalized pseudoparticle phase shifts. 

i t  follows from the present results that the critical exponents of the model are 
fully determined by the pseudoparticle renormalized int.eractions [4]. In fact, these 
exponents are exclusively functions of renormalized scattering phase shifts associated 
to the pseudoparticle forward scattering processes such that both pseudo-momenta 
are pseudo-Fermi points. O n  the other band, the Landau-Luttinger liquid formu- 
lation introduces a more general framework: it contains full information about the 
pseudoparticle renormalized interactions for any pair of pseudo-momenta [4]. 

In this letter we have introduced the concept of a Landau-Luttinger liquid. In 
addition to clarifying the physics by reducing the study of the low-lying excitations 
to the familiar language of band theory, the formulation used here allows explicit 
calculation of the f-functions which, as in Fermi liquid theory, are related to the 
forward scattering amplitudes of the pseudoparticles. Moreover, our results show that 
the renormalized Landau-Luttinger theory has only forward scattering. Although the 
formal similarities with the Fermi liquid theory are striking, we would like to stress 
bhe crucial differences with the latter. I t  is important to realize that in the former 
the pseudoparticles involved in the description of the low-energy properties refer to 
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exact eigenstates of the many-body system, This is in contrast to Fermi liquid theory 
where the quasiparticles describe approximate eigenstates of finite lifetime near the 
Fermi surface. Finally, there is a second important difference which we believe to be 
common to all non-trivial higher dimensional fermionic liquids for which the overlap 
integral of [2] vanishes (‘infrared catastrophe’): there is no one-to-one correspondence 
between the pseudoparticles of such non-trivial liquids (including the present Landau- 
Luttinger liquids) and the real particles (electrons) upon turning off adiabatically the 
bare interaction. This is obviously due to the fact that  in these non-trivial liquids the 
usual Fermi liquid fixed point is excluded. 

The present results may offer insight into the physics of higher dimensional sys- 
tems [2] where, in contrast to the ID  case, the renormalized interaction of the new 
Landau liquid pseudoparticles could eventually produce bound states, providing a 
mechanism for high-T, superconductivity. Moreover, we believe they are relevant to 
quasi-one-dimensional materials. For example coupling the charge and spin pseudo- 
particles to 4kF and 2kF phonon modes [4], respectively, results in 4kF (charge) and 
2k, (spin) instabilities for large and intermediate on-site U ,  in agreement with exper- 
iment [13]. 

This work has been initiated while we were attending the high-T, Program at the ISI, 
Torino. JC was supported by the Alexander von Humboldt-Stiftung, Un Evora and 
CFMCINIC (Lisbon). We thank P W Anderson, N Andrei, D Baeriswyl, P A Bares, 
P Fulde, P Horsch, M Ogata and T A,l Rice for stimulating discussions. 
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